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Computing Block-Angular Karmarkar Projections with
Applications to Stochastic Programming

John R. Birge*and Liqun Qi **

e e

Abstract: We present;,a variant of Karmarkar’s, algorithm for block angular structured linear programs,

|

r
such as stochastic linear programs. By computing the projection efficiently, we give a worst case bound on

the order of the running time that can be an order of magnitude better than that of Karmarkar’s standard

algorithm. A related variant is applied to the dual program, and its implications for very large-scale problems
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1. Introduction

Block angular and dual block angular linear programs arise in a variety of applications, in particular,

stochastic linear programming. Dual block angular linear programs (see, e.g., {10},[21],{29]) have the form:

min Tzo +Xn., Tz
subject to  Apzo = by, (1.1)
Axzo +W,,z., =bk,k= 1,...,N, )
zx 2 0, k=0,...,N,
where the sises of the matrices are consistent with z, € R** k =0,...,N, b, € R™« k= 0,..., N, where

my <ng,k=0,...,N, and we assume Ay and W, have full row ranks. We also assume that the blocks are

large enough that ng < 2::':1 ny.

Stochastic linear programs with fixed recourse (SLPF) with discrete random elements have the form in

(1.1). They can be formulated as:

min Tz +Q(z)
subject to Az =b (1.2)
z20,
where
N
2(z) = Y_ pQ(z, €%
k=l

and for each k = 1,..., N, the recourse cost Q(z, £*) is obtained by solving the recourse problem:

Q(z,€*) = inf{¢"y | Wy = h* - T*z,y € R},
ek = (qknhhvr)»
pr = prob[¢(w) = €*).

Substituting the expressions for Q in (1.2) , we obtain a problem in the form of (1.1) with W = W,
T = ;., and ppg* =cp, for k=1,...,N. This problem has n = ng + Nn, variables and m = my + Nm,
constraints. The methods for solving it include: the L-shaped method, proposed by Van Slyke and Wets [25];
the decomposition method, proposed by Dantsig and Madansky [11]; and the basis factorisation method,
proposed by Strasicky (23], and modified by Kall (17| and Wets (27]. The first method directly solves SLPF

in form (1.1), while the other two solve the dual. Birge [3][4] discusees the relationship among them. Also

see (27](28] for other references.
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U T, =--- =Tn, then (1.1) has a staircase structure. This type of problem is widely encountered in the !
i context of dynamical systems, i.e., discrete versions of continuous linear programs or linear control problems "
(7](8](13](21](25][28]- :
In this paper, we study the approach of Karmarkar’s projective algorithm for linear programming [19) y
to solve (1.1). We show that the worst-case performance bound can be improved for this special structure :
by reducing the complexity of computing the projections. For large (ﬁ ~ ng ~ n), this improvement is é
an order of magnitude. We also show that refinements of a special case of {1.1) can be solved in at most a 4
number of iterations which is linear in the additional data. These results indicate the potential of interior
point methods in stochastic linear programming, but extensive computational studies will be required to 3‘_
determine their practical average-case behavior. "I
A standard form version of Karmarkar’s algorithm is briefly described in Section 2. For L, the length of E
the input, this method requires O(nL) iterations. The order of each iteration is dominated by the projection N
operation requiring generally O(n%L) operations. In Section 3, by means of the Sherman-Morrison-Woodbury '
formula and block matrix method, we explore the advantage of the special structure of (1.1) and obtain a .
method for the projection with order O(N(n} + n3n, + non?)) = O(n3L) if ng ~ ny ~ N. A further 2
reduction is posesible using rank-one updates of an inverse or Cholesky factorisation. Section 4 presents o
another variant of Karmarkar’s algorithm to solve the dual of (1.1) (with block angular structure). Section
5 describes the implementation of the variants in sequential approximation methods and shows how worst )
case bounds can be improved in these procedures. Section 6 provides some special cases where additional W
computational savings are possible. :.
W
2. Karmarkar’s projective algorithm .
We briefly describe a standard form versionof Karmarkar’s projective algorithm as in Gay|[14], Ye[30}, or N
Lustig(20] (with known objective value). We choose the standard form because we believe it is more practical :
for computation than various canonical forms. We also assume an unknown objective value and use Todd '\
and Burrell’s (24| method for updating a lower bound on the objective value. We use an initial lower bound y
as is often available in practice. An alternative is Anstreicher’s [1) method to obtain an initial lower bound. ":‘
; X
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Suppose a linear program:

min Tz
subject to Az =, (2.1)
z20.

where € R*, c € 2™, b€ 2™, A€ Z™*" with optimal value cTz* = 2°.

Suppose that we have a strictly interior feasible point 3 of (2.1), i.e.,

AG=b,3>0, (2.2)

a lower bound [° on 3°, and that the set of feasible solutions in (2.1) is bounded. Note that if we do not

have a feasible solution, then we can solve a phase-one problem as in Karmarkar [19).
Karmarkar’s algorithm creates a sequence of points z°, z!, ..., * by these steps:
1. 2° =3,k =0. A lower bound I° < s5°.
L If T2k - l"il small enough, i.e., less than a given positive number ¢, then stop. Otherwise go to 3.

3. Let D = diag{z?,...,2%)}, A := [AD, —b], and let P; be the projection onto the null space of A. Find

()

and

v="P; (?) (2.3)

and let p(I*) = min{u; +*y; :i=1,...,n+1}.
If u(i*) <O, let (++1 = (k.
Otherwise, let **! = min{u;/u; : v; > 0,6 =1,...,n+1}.

4. Letcp=u— 5+l — (T2* — **1)e/(n + 1), where ¢ = (1,...,1)T € R*+1,

Let

1 a [
= — - P
/ n+1 \.;nin + l; lleplla

Suppose ¢ = §/gn+1, where § € R™, goy1 € R. Then z**! = Dg/gns1- k=k+1,g0 t0 1.



A
™
v
The main computational effort at each step k is to compute the projections in (2.3). This effort is [
.
generally O(n3L). Since this algorithm converges in O(nL) steps (see Ye[30]), the algorithm has complexity \
O(n*L?). Karmarkar (19| uses a rank-one updating scheme to reduce the complexity to O(n32L2). We \
discuss this approach and a related updating method of Shanno|[22] in Section 3. .
3
8. Computation Reduction .\
We consider (1.1) and assume n, =n3 = - = ny and m; = my = --- = my without loss of generality. .
If an element of a vector or a matrix needs to be specified, we use parentheses, e.g., (Ax);;. -
Let n=ng+ Nn;,m=mg+ Nm,, ;
zo co bo b
z= N P A U B I . :
zN 7Y bn ,
and :
Ao O - 0
AL W, 0
1 e oo ﬁ
Ay 0 - Wy : N
Then (1.1) can be expressed exactly the same as (2.1) for application of Karmarkar's algorithm as described ~
in Section 2. Suppose a = (a],...,a%)7 is the current iteration point of Karmarkar’s algorithm. Let ‘
Dy = diag{(ax)1,..-,(ar)ns}, D = diag{Dy,...,Dn}. As discussed in Section 2, the main computational o
work at each step of Karmarkar’s algorithm is to compute the projections in (2.3). The projection can be ;
written as
"
Py = (1- AT(AAT)1A) A
8
- .l
where (AAT) = AD3AT + 00T := M. In this case, the work is dominated by computing M~!. Using Y
an explicit inverse would generally not be the most efficient method for computing the projection but the .-
.
complexity is the same in other approaches. In the following, we use the inverse notation to simplify our :
N
discussion of reduced complexity order for (1.1). We then describe how this may be used in practice to solve v'
systems with M. .
i
(W
Theorem 8.1. Let o = —I; € R™o*™e, G\ = W, DIWT k = 1,...,N, S = diag{S,...,Sy}. Then '::
"
8! = diag(S0,87!,..., 55"} Let By = (Azby) for k = 0,...,N,Dp = diag{Do, 1}, I, and I; be unit N
5 \J
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matrices in R™*! and R™o respectively. Let

N
Gy = (Do) +)_ B{S;'B:,G; = -BoG; ' B, (3.1)
k=0
By, L
B, 0
v=1 . .
By O

If G, is invertible, then G3 and M are invertible and

L GI'BY\ (I, o L o G! o -
-1_@g-1_ ¢g-1 1 1 Yo 1 1 1 T g-1
ur=sm-so (g R (8 an) (5 2) (5 5)ems

Proof: In Karmarkar’s algorithm, a is positive, i.e., D is always invertible. Since W), has full row rank, Sj is
invertible for k = 1,..., N. Therefore, S is invertible. Let D = diag{Do, I3}. Let

BoDo I
0= (G F)o-( " () -um
BNBo 0

It is seen that M = S + JUT. According to the Sherman-Morrison-Woodbury formula [16], M is invertible

and

M '=8"1_g-'0(I+ 078~ 10)- 0TS}
=81 -s-Ww(D 2+ UTS'U)"WTS ! (3.3)
=85t-g-lyegtuTs?
if and only if (1 + UT S~10) is invertible, i.e., G is invertible.
Suppose G, is invertible. Since G, is a symmetric matrix, so is G{‘, and we can write G;‘ =
Gl'l/ 3G1'/3, where G;l/ ? is also a symmetric matrix (although possibly complex). Since Ao has full row
rank, BoG;'/? also has full row rank. Since no + 1 > mo, Ga = ~(BoG; */?)(BoG'/*)T is also invertible.

It is easy to see that

G!.G;‘Bg' L o L o G;‘oznogl
0 L 0 G;'/\By I 0 I 0o I Motno+l

Hence, G is invertible. According to (3.5), M is invertible and (3.4) holds.e

By using (3.2), we can now reduce the complexity of computing the projection P;.
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Theorem 8.3 (Complexity). Suppose G, is invertible then the overall running time of computing projections
(2.3) is O(N(n} + n3ng + n3n;)L). {

Proof: At each step, we have for # = max{ng,n,},

work number of operations

calculate §—1 O(Nn3)

calculate G; O(Nn3ng + ni1nd) :
calculate G; O(n3) ‘
calculate G;! and G;* O(n3)

multiply A with a vector O(mn)

multiply S~ with a vector O(mm,)

multiply U with a vector O(mno)

Other efforts are small compared with the operations above. According to our assumptions, the number
of arithmetic operations is dominated by O(N(n? + n3ng + n1n3)). Since each arithmetic operation needs
a precision of O(L) we obtain our conclusion. 8

As we stated above,in practice, we would not compute M~! explicitly. The work in (2.3) is dominated

by the effort to solve systems of the form

My =y, (3.4) )
using
v=p-r, (3.5)
4
where s !
P=y, y
G' = UTP, (3.6)
Sr=Usg. '

The systems in (3.6) require solving systems with Sj,computation of G; and G; and solving systems with
G, and G;3. In practice, we would find a Cholesky factorisation of each S, use them to find G; and G; and

find Cholesky factorisations of G; and G;.

. ] N 2 ey +
"“‘-“'t‘: W n'”n'. A |"‘I‘?‘|‘f‘|. n‘n'. |'.\|' u"‘o.‘ ', n‘,‘-'. '!'n.?‘c'. l'..l..ﬁ".“l‘!.l..\’slt |"'0'u’!‘u"'-"‘n'e‘n'f.o‘,.‘u'..‘.',‘a"'t"':l‘.‘u'.‘o‘,‘-"‘-‘k-"'."'o"'x'.‘-!.‘."‘."i v




Karmarkar [19] used a rank-one updating technique for solving a canonical form linear program. In

this case, we let

5= %z":(z;“/z;), (3.7)
i=1
and update (Dy);; only if
83 (D)is/=* € (1/2,2). (3.8)

In our problem, for each zj(t) such that (3.8) holds, we would update Sy, S, 1 and G,. In k iterations of the
algorithm (where [y = 3°*), we would require O(kn?®) of these updates. In this case, using (3.2) results in a
complexity of O((n%°n? +nfi+ n3)nL?) for the entire algorithm, or, if N ~ ng ~ n;, O(n?5{3), compared to
Karmarkar’s general result of O(n%5L3). For unknown objective values, we could use Karmarkar’s canonical

form and (together with the results in the next section) obatain a similar reduction.

Several practical problems occur with using rank—one updates of the explicit inverses. First, we cannot
guarantee the lower bound estimates in our algorithm unless lp = 2*. We can, in practice, however, update
lx only after several iterations or use ¢Tz) (with different termination condition) in place of [y, in Step 4
and still achieve low iteration counts (Lustig[20]). The second problem is that we cannot guarantee the same
complexity order if we allow the large values of a used in practice (see, e.g., the discussion in [15)). Shanno
[22] observed that the complexity can be viewed as a function of a, that no bound on a appears necessary,

and that intervals {1/p, p| for p > 2 may also be used in (3.8) to increase computational efficiency.

The third problem in Karmarkar’s rank-one updating scheme is its use of explicit inverses. Shanno
also iescribes how to avoid this problem by using Fletcher and Powell’s [12] updating formula for Cholesky
factorisations (with the same complexity order as the inverse updates). This appears to achieve substantial
increases in efficiency. In our case, we would use this procedure to update our Cholesky factorisations of Sy,

G1, and G3, and, thereby, achieve a practical and efficient use of our projection method.

4. Dual Formulation

The dual problem to (1.1) can also be solved by a variant of Karmarkar’s algorithm. The program has
block-angular structure which leads to computational reductions similar to those of Section 3. An advantage

AP
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is also gained for the use of Karmarkar’s algorithm in approximation schemes.

The dual of (1.1) is

max Txo +3h bTm
subject to AZm + Eﬁ;’} Axmr < co (41)
W n Sceryk=1,...,N.

An alternative in form (2.1) can be easily obtained. Rewrite (4.1) as

. N 3T
min "2[‘=o_brp¢yk
subject to Z:‘L%‘Ak Y« = Coy (4.2)
Wiy =cx,k=1,...,N;
Yk lgO,k=0,...,N;

where A5 = (AT, - AT, 1),A; = (AT,-AT,0), by = (bT,—b7,0), Wy = (WT,-WF,I), k=1,...,N, and

the y, variables are defined accordingly.

The computationai effort is again dominated by calculating M~! where M = AD2AT + ccT for A the

constraint matrix in (4.2).

Note that . ot L
A-Dﬁj = Wl DgAl Wx D?Wl 0 0
=T . — 0 ’ ‘. o -
Wy D} An 0 . WyD3Wy
Now obeerve that M = P+ UVT where
P= W,D¥A, W,DW, o 0
Wy D:2 a 0 L
NENEN 0 WNDNWN
I Co
v=|? |,
0 cN

_ 0 co
W;D?Al (41
T . _ :
Wl D?VAN N
The Sherman-Morrison- Woodbury formula yields

M~ =Pp-1 - p-iU(I + VT P~'U)~l¥T P!,

9
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Let
N
N H=Y)"4, D}4,,
v k=0
" =T 2%
B H,=W_D{Ax,k=1,...,N,
"
g and
!
19 —T —
. Jy = WaDWy,k=1,...,N,
\
v
then
d H-! o --- 0
= -JTHHY Ut 0 0
Pl= v o (4.4)
S : 0 . 0
K. -JytHyHY o0 .. JG!
194G
and
:}.
- 4‘ (I+VTP_1U)= ( I- 2,‘ IHTJk lHkH- _Z:k I(HTJ,‘ lHkH ICQ—HTJk Co) )
'.',. TH TN TIT'HH" I+cTH e+ S (TIT H H Yo + T I ex)
& (45)
" Equations (4.3), (4.4), and (4.5) can then be used to develop another projection method for (4.2).
|
)
) Theorem 4.2. The overall running time of the projection using (4.3-5) is O(N(n} + ning + nyn3)).
0"
" Proof: The computational effort in each step is:
. work number of operations
*5_. Calculate H-1 O(Nnind)
.,
<. Calculate J; L k=1...,N O(Nn3)
3 Calculate HyH-',k=1,...,N O(Nnind)
”
2 Cakulate HT J; k=1,...,N O(Nning)
4
N Cakulate (I + VT P-1U)-! o(n})
. Multiply A with a vector O(mno + Nny(m; +n,))
: Multiply P~! with a vector O(nn)
; Multiply V7 with a vector O(ngn)
P All other effort is dominated by these operations. The number of operations is O(N(n} + n3ng +n,n2)),
0 .
0:: ) and the result is obtained as in Theorem 3.2.8
10
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X

o
¢
o Theorem 4.2 gives the same complexity as Theorem 3.2, so, again for N ~ ng ~ n;, we have O(n®L?)
;:. complexity for the full algorithm. We can again use Cholesky factorizations to make the projection with
] (4.3-5) practical.
,
~
. 5. Dual Use in Approximations
N
N The dual provides an additional benefit. In using (3.1) to approximate a stochastic linear program with
I more than N realizations of the random vector bi, additional realizations by 41, .. ., by 4t are added to (3.1)
" and the probabilities pg, & = 1,..., N+ are updated. (See Birge and Wets [6] for procedures to do this.) A
L’ ,
feasible solution to the new problem (3.1) with N’ = N + ! is not readily found but given a feasible solution
- (4.2) another can be found easily f T* = T? = --- =T¥ =T and ¢ = ¢ = --- = ¢¥ = gq. Under these
‘
N assumptions let the old solution be  (y8'e,...,y3¢) where
"
o w7, old _ —
bl w v =pegk=1,...,N,
o and
:‘ =T Y T
- A0+ T @i =oco,
-: k=1
a where T = (T, —T,0).
.o Define a new solution by
V : ygew = ygld’
. %
N 5.1
- Yy = (Ey?'d)pz"',k =1....,.N+1 (5-1)
.:- s=1
| :: The solution in (5.1) is then feasible in (4.2) with objective value b yg'd + SN 3T (TN | ye'd)ppe~.
L%
< The total effort for solving the new (4.2) should be less than resolving (3.1) because no procedures to find
. a feasible interior point are necessary (assuming, of course, that y°'d is interior). The objective is generally
e close to the old optimal value of (4.2) and should be close to the new optimal value. The effort factor for
L)
the number of iterations to solve the new (4.2) should therefore be much smaller than O(nL).
- A similar procedure can be used in the primal problem (3.1) if the randomness is limited to the objective
% function, i.e., T' =T?2 =-..=TN =T and h! =...= h¥ = h but ¢* # ¢’ for all + # j. Again,a starting
~
N 11
)
)
Y
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feasible solution can be easily found by letting

:: 2" =204, k=0,...,N,
: | (5:2)
N z?e' = argminzgm{q"z'?ld,i = 1,.-.,N},j = N+ 1,...,N+ l.
Now let p = z:’l PI”, Zola be the objective of the old (3.1) with 22 and let
5 N+t '
n zge' = -x;cTz(n)ew + E p;ewqu?ew‘
:. j=N+1
: The new initial objective value in (3.1) is then
(’ N .
Znew = (1 - i)crzgld + 2 e z?ld + 28,0,
'’ i=1
N and we wish to find
. N
: Ziew = min{(1 - p)cT 23 + D p3 "'z + 2y}, (53)
b =1
g . where 2}, = pcTzo + E:’:A‘/:x PI*™¢'z;. Let z* be the optimal value of the old (3.1) and let z°¢ be an
Y
: interior solution of the old (3.1) such that z,q < 2* + ¢. Now assume that p;*"/(1 — P), ie. that the
N old probabilities have the same relative values in the new problem, so that (1 — F)z* is the minimum of
)
) (1-p)eTzo + 2::—.1 p*"¢’z;. We then have
3
j’ Ziew < (1 —P)2o1a + max 2y,
) (5.4)
L Zhew 2 (1 = P)(201a ~ €) + min 2.
d
Let L' be the sise of the data for the objective and constraints relating only to z)y. This yields the
C
:' following result.
&
Theorem 5.1 The overall running time of Algorithm 3.1 starting from a solution defined by (5.2) for N + !
realisations of the objective ¢*, assuming T = - .. = TN* =T, gl = ... = nN+ = h, pRev /(1 - ) = P,
1\
N and € < 2%, is O((N + U)(n} + n2ng + nyn3)nLL’).
'
N Proof: The number of operations per iteration follows from Theorem 3.2. The number of iterations O(nL')
) follows from (5.4) for 20(L) > 24 > —20(F),
Theorem 5.1 provides a worst—case bound that can be used in solving successively larger stochastic
\]
b
- linear programs. The entire approximating process can then be seen as a variable dimension variant of
{ 12
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Karmarkar’s algorithm in which the number of iterations is O(InL’) where I additional problems of size L'

are added after the initial solution of (3.1).

This result contrasts with the alternative (simplex—based) approaches to stochastic linear programs, for
which, the complexity of solving each new problem depends on the sise of the entire problem. Good bounds

on z}; that would often be available in practice could further reduce the computational effort.

For a single SLPF, we can also compare the projective algorithm with simplex- based methods if we
assume average cases for iteration counts. The best available results for stochastic linear programming
appear to be in uses of the L-shaped method of Van Slyke and Wets (Birge {2]). It appears that the
running time is typically then O(N#">) = O(n?) (Birge and Louveaux [5]). If we use rank-one updates in the
projective method and assume an average O(logn) iterations as has been conjectured (Karmarkar [18]), then
the projective algorithm has running time O(n'-®logn) (ignoring L which is assumed in both estimates).
This observation combined with the potential for sequential approximation indicates the promise for the
projective algorithm in stochastic linear programming. Further computational experience will be required

to bear this out.

6. Special Cases

The work of the variants of Karmarkar’s algorithm is reduced for the following special cases.
(1) Simple recourse (28]

In this case, W = (I,—I), where I is the unit matrix in R™1X™: and n, = 2m;. Write z =
(z8,25 )20 2y, € ™, for k = 1,...,N in (3.1). Let Dy = diag{D},D;} in (3.2), where D;},D; €
Rm1Xms fork=1,...,N. Then in Theorem 3.1, we have

Sy =WDIWT = (D})? + (D7)?,
(6.1)
Syt =diag{((a)] + (a)])™- .-, ((6)2, + (a0)2) ')
where D} = diag{(a}})1,..., (a7 )m,} and Dy = diag{(az)1,-.-,(a5)m,}, for k = 1,..., N. Therefore,
S-! can be easily calculated in (3.2).
The work is reduced but the order of the algorithm is the same. Similar modifications can be made in

13
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the dual approach.

(2) Network recourse (26
In this case,
_(E o
w=(7 1)

where E is the network node-arc incidence matrix. The calculation work of Sy and S; ! can still be reduced

but again the order is the same.
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